Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bishai

THB Goals

TIID Goals

Motivatio

Oscillation
Experimental

R&D for Spallation

Proton Radiography

oummary

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography CAD Seminar, BNL Sep 19, 2014

Mary Bishai

September 19, 2014

- 1 THB Goals
- 2 Physics Motivation
- 3 $n \bar{n}(')$ Oscillation Experimental Concepts
- 4 R&D for Spallation Sources
- 5 Proton Radiography
 - Summary

$N - \bar{N}$ Working Group at THB Workshop M. Bishai (BNL), G. Brooijmans (Columbia)

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bishai

THB Goals

Physics Motivation

 $n - \bar{n}(')$ Oscillation Experimental Concepts

R&D for Spallation Sources

Proton Radiography

Summai

How We Got Here

- Collaboration is being formed to pursue new search for neutronanti-neutron oscillations using intense ESS cold neutron flux
 - Expect to improve sensitivity by ⑦(500)
 - www.nnbar-at-ess.org
- Question arose: what can be done at BNL?
 - Not a competitive oscillation experiment
 - At least not horizontal
 - O (Semi-)vertical??
 - Discuss this over coffee or beer
 - Neutron test beams?
 - Other things "NNbar enthusiasts" are interested in?

$n-\bar{n}$ Oscillations Beyond the Standard Model

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bisha

THB Goals

Physics Motivation

 $n - \bar{n}(')$ Oscillation Experimental Concepts

R&D for Spallation Sources

Proton Radiography

Summary

- Many reasons to expect B-number is not a good symmetry of nature
- Sphalerons in SM, GUTs, origin of matter, etc...
- If B is violated, important to determine the selection rules:
- $\Delta B = 1$ (proton decay)
- ΔB = 2 (neutron-antineutron oscillations)
- For many extensions of the standard model (Pati-Salaam models with supersymmetry, theories with extra dimensions or branes, model-independent treatments)

N-Nbar can occur at experimental limits even when proton decay not observed!

Is There Mirror Matter?

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bisha

THB Goal

Physics Motivation

 $n - \bar{n}(')$ Oscillation Experimenta Concepts

R&D for Spallation Sources

Proton Radiograph

Summa

Two coexisting worlds look theoretically very attractive

- ullet Two identical gauge factors, G imes G', with identical field contents and Lagrangians: $\mathcal{L}_{\mathrm{tot}} = \mathcal{L} + \mathcal{L}' + \mathcal{L}_{\mathrm{mix}}$ SU(5) imes SU(5)', etc.
- ullet Can naturally emerge in string theory: O & M matter fields localized on two parallel branes with gravity propagating in bulk: e.g. $E_8 imes E_8'$
- Exact parity $G \leftrightarrow G'$: Mirror matter is dark (for us), but its particle physics we know exactly (on our skin) no new parameters!

Mirror World ↔ Our World (Y. Kamyshkov)

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bisha

THB Goal

Physics Motivation

 $n - \bar{n}(')$ Oscillation Experimental Concepts

R&D for Spallation Sources

Proton Radiograph

Summar

Concept of Mirror Matter Concept of Mirror Matter

Original idea of the shadow world was that mirror matter is an exact replica of our regular matter: mass of mirror electron is the same as of normal electron; mirror photon is massless but different from normal photon; mirror charged particles have their own electric charge that our normal charges do not see and do not interact with; mirror magnetic field is due to the motion of mirror charges, it is different from ordinary magnetic field (however, can be measured in the same units: Gauss); mirror neutron and proton have the same mass, spin, magnetic moment and similar e-m strong and weak forces in mirror sector, not interacting with our particles; there are similar mirror nuclei, atoms, stars, galaxies...? life ...?

Interaction between MM and OM is by gravity and possibly through oscillation mechanism of neutral particles: ν , n, γ

Mirror Matter n - n' Oscillation in Magnetic Fields Y. Kamyshkov (U. Tennessee)

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bisha

THB Goal

....

 $n - \bar{n}(')$

Oscillation
Experimental
Concepts

R&D for Spallation Sources

Proton Radiography

Summar

Neutron disappearance in the presence of B'(Z. Berezhiani, 2009)

$$P_{\rm B}(t) = p_{\rm B}(t) + d_{\rm B}(t) \cdot \cos \beta$$

$$p(t) = \frac{\sin^2 \left[(\omega - \omega')t \right]}{2\tau^2 (\omega - \omega')^2} + \frac{\sin^2 \left[(\omega + \omega')t \right]}{2\tau^2 (\omega + \omega')^2}$$

$$d(t) = \frac{\sin^2\left[(\omega - \omega')t\right]}{2\tau^2(\omega - \omega')^2} - \frac{\sin^2\left[(\omega + \omega')t\right]}{2\tau^2(\omega + \omega')^2}$$

where $\omega = \frac{1}{2} |\mu B|$ and $\omega' = \frac{1}{2} |\mu B'|$; τ -oscillation time

$$A_B^{\text{det}}(t) = \frac{N_{-B}(t) - N_B(t)}{N_{-B}(t) + N_B(t)} \leftarrow \text{assymetry}$$

Reasonable exploration region $\tau > 1s$; $B' \sim \text{similar to } 0.5 \text{ G}$

Probability is related to $n \rightarrow n'$ oscillation time τ

Mirror Matter n - n' Oscillation Searches (Y. Kamyshkov)

Report from THB 2014 Workshop : Neutron oscillations and Proton Radiography

Mary Bisha

THB Goal

....

 $n - \bar{n}(')$ Oscillation
Experimental
Concepts

R&D for Spallation Sources

Proton Radiography

Summa

Neutron oscillating into mirror neutron is interacting with the trap wall

in case of successful guessing for $\vec{B}=\vec{B}'$ the resonance enhancement is expected: the oscillation frequency will be reduced to (1/few s) and oscillation amplitude increased by few orders of magnitude, ultimately to

A signal for mirror matter?

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

 $n - \bar{n}(')$ Oscillation Experimental Concepts

Magnetic anomaly in UCN trapping: signal for neutron oscillation to parallel world?

Z. Berezhiani and F. Nesti Eur. Phys. J. C72 (2012) 1974; also http://arxiv.org/abs/1203.1035

$$A_{\rm B}^{\rm det}(t) = \frac{N_{-\rm B}(t) - N_{\rm B}(t)}{N_{-\rm B}(t) + N_{\rm B}(t)} \label{eq:ABdet}$$

Measured asymmetry → $\sim (7\pm1.4)\times10^{-4} (\sim5\sigma)$

Upper Panel: from up to down, the monitor and detector counts in $\{B\}$ series, M and $N = N_1 + N_2$ normalized respectively to 470000 and 140000; and the ratios $N/M(\times 47/14)$ and N_1/N_2 . Lower Panel: results for A_B^{det} binned by two {B} cycles (16 measurements). with the constant and periodic fits.

New concept: Neutron Regeneration

(Y. Kamyshkov)

Report from THB 2014 Workshop : Neutron oscillations and Proton Radiography

Mary Bishai

THB Goal

TTID Goal

 $n - \bar{n}(')$ Oscillation Experimental Concepts

R&D for Spallation Sources

Proton Radiograph

Summa

Possible Neutron Regeneration Search

- It is an appearance search of $n \to n' \to n$
- Alternative to disappearance $n \to n'$ observed with UCN
- It excludes collisions with walls that might be the reason for some unknown effect resulting to the measured assymetry with UCN.

Mirror Matter Search at BNL?

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

 $n - \bar{n}(')$ Oscillation Experimental Concepts

Small experiment that could be carried out at BNL.

- A BNL $n \rightarrow n' \rightarrow n$ regeneration experiment is complementary to $n \to n'$ disappearance experiment done earlier with a potential 5.2σ signal.
- Could be done now with 100kW for 1 day or 20 kW for 10 days for example.
- Requires cold neutrons
- Pulsed beam structure can be used to reduce backgrounds.

Next Generation $n - \bar{n}$ Oscillation Search Expts (R. Pattie)

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bisha

THB Goa

1110 000

 $n - \bar{n}(')$ Oscillation Experimental Concepts

R&D for Spallation

Proton Radiograph

Summa

Horizontal Configuration for Next Generation NNbar search experiment

- 1. Increased flight path
- 2. Colder neutron source
- 3. Higher m supermirror neutron optics
- 4. Modern Calorimeter/Vertex Tracker

Challenges of Nex-Gen $n - \bar{n}$ Oscillation Expts

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bisha

THB Goal

Physics

 $n - \bar{n}(')$ Oscillation
Experimental

R&D for Spallation

Proton Radiography ■ Previous generation of $n - \bar{n}$ oscillation expts at reactors. Nex-Gen is at accelerators (spallation sources) \Rightarrow more backgrounds from fast neutrons and protons.

- Need better detectors to constrain annihilation vertex ⇒ more tests of detector technology in neutron beams to understand fast background rejection.
- Pulsed beams can also help reduce backgrounds.
- ATLAS TRT tests at LANL LANSCE used 5-10n/seconds. Factor of 10x intensity less could still be useful to benchmark detector simulations of the fast neutron background.
- A big effort, $n \bar{n}$ oscillations is not within the scope of what can be done at BNL. BNL can participate in detector and moderator R&D.

ESS Moderator Designs (G. Muhrer)

Report from THB 2014 Workshop : Neutron oscillations and Proton Radiography

Mary Bisha

THB Goa

TIID Goal

. .

Oscillation Experimenta

R&D for Spallation Sources

Proton Radiography

Summa

Flat Vs. Tall Moderators (G. Muhrer)

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bisha

THB Goals

Physics

 $n - \bar{n}(')$ Oscillation
Experimental

R&D for Spallation Sources

Proton Radiography

Summa

Uthermal neutrons arriving from the surroundings are transformed into cold ones within about 1 cm of the walls of the moderator vessel

ESS Flat Moderator Concept (G. Muhrer)

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bisha

THB Goals

TITE Goal.

 $n - \bar{n}(')$ Oscillation

Oscillation Experimenta Concepts

R&D for Spallation Sources

Proton Radiography

Summar

Bottom Moderator Designs (G. Muhrer)

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bisha

THB Goals

Physics

 $n - \bar{n}(')$ Oscillation
Experimenta

R&D for Spallation Sources

Proton Radiograph

Summa

High intensity D_2 source can give neutron <u>intensity</u> (brightness × emission surface area) 3-4 × TDR

Moderator tests at BNL THB?

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

R&D for Spallation Sources

ESS is going forward

- Possible BNL contribution to experiments using cold neutrons from ESS:
 - test new moderator materials (designs?) in a test facility.
- Need 100 kW (?)test facility where we can test an engineered model in an environment where the degradation of the moderator can be monitored in a low intensity environment.
- Most likely its the material of the bottom moderator (could serve up to 11 beamlines) that can be subject to R&D - like D_2 .

Proton Radiography (A. Saunders)

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bisha

THB Goal

Motivation

Oscillation
Experimenta
Concepts

R&D for Spallation Sources

Proton Radiography

Summa

Proton Radiography (A. Saunders)

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bisha

THB Goal

Physics Motivation

n - n(')
Oscillation
Experimental
Concepts

R&D for Spallation Sources

Proton Radiography

Summar

Resolution of Proton Radiography

- Object scattering introduced as the protons are scattered while traversing the object.
- Chromatic aberrations- introduced as the protons pass through the magnetic lens imaging system.
- Detector blur- introduced as the proton interacts with the proton-to-light converter and as the light is gated and collected with a camera system.

Previous Radiography Facility at AGS (A. Saunders)

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bisha

THB Goal

TTID GOA

 $n - \bar{n}(')$

Oscillation Experimental Concepts

R&D for Spallation

Proton Radiography

Summa

Lens system and camera station for 24 GeV radiography at the AGS (Experiment 933)

24 GeV ~30 ns pulses <1×10¹¹ protons/pulse

pRad lens in U-Line at AGS

P Radiography Industrial Applications (A. Saunders)

Report from THB 2014 Workshop: Neutron oscillations and Proton Radiography

Mary Bisha

THB Goa

Disertes

Motivation

Oscillation
Experimenta

R&D for Spallation

Proton Radiography

Summa

Industrial Applications could take advantage of NNSAfunded pRad facility

Possible Radiography Facilities at BNL (A. Saunders)

Report from THB 2014 Workshop : Neutron oscillations and Proton Radiography

Mary Bisha

THR Goa

Physics

 $n - \bar{n}(')$

Oscillation Experimenta Concepts

R&D for Spallatio Sources

Proton Radiography

Summ

Summary

Report from THB 2014 Workshop : Neutron oscillations and Proton Radiography

Mary Bisha

THB Goal

Physics Motivation

n — n̄(') Oscillation Experimental Concepts

R&D for Spallation

Proton Radiograph

Summary

- A new concept for n n' appearance experiment to search for evidence for mirror neutrons could be mounted at a new hadron beamline at BNL.
- Oscillation experiments searching for $n \bar{n}$ are not within the scope of what can be done at BNL.
- New hadron beamlines at BNL can contribute to moderator R&D for spallation sources. Particularly in testing moderator materials.
- Reviving proton radiography facilities at BNL could be of great interest and benefit to wide community.

Beam requirements:

Species	Beam Energy	Intensity	Rep Rate	Custom	Comment
р	0.5-2	high	O(10)		n moderator testing close to spallation target
n	cold (few meV)			$\sim 10^8$ n/s	neutron regeneration
n	fast (10-800 MeV)			10 ⁶ n/s?	WNR alternative
р	24 GeV	1e11			p radiography only few pulses needed